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Abstract

This paper is aimed at the application of the Generalized Integral Transform Technique to the transient version
of the classical di�erentially heated square cavity problem, considering both constant and variable ¯uid properties.
The streamfunction-only formulation of the ¯ow equations and the associated energy equation under laminar ¯ow

regime are employed in seeking a hybrid numerical±analytical solution to this natural convection problem. The
computational procedure is carefully validated and a thorough convergence analysis is undertaken, yielding sets of
reference results. The computed transient behavior of the coupled heat and ¯uid ¯ow phenomena is compared to

some previously reported results. The solution for variable ¯uid properties with partial Boussinesq approximation
(density variation in the body force term only) is presented and compared with the constant properties results. Both
models are investigated for di�erent values of the Rayleigh number, from 103 to 105, and Prandtl number equal to
0.71. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Natural convection inside cavities o�ers challenging

test cases for the covalidation of numerical methods

devised for the solution of coupled heat and ¯uid ¯ow

phenomena, governed by the continuity, the Navier±
Stokes and the energy equations. The establishment of

reliable benchmark results in both steady- and transi-

ent-state then becomes of major interest in allowing

for critical comparisons among di�erent scheme var-
iants and computational implementation strategies.

In recent years, the so-called Generalized Integral
Transform Technique (GITT) [1] has been successfully
employed in the hybrid numerical±analytical solution
of several classes of problems in di�usion and convec-

tion±di�usion, while being extended to the solution of
the Navier±Stokes equations, either in isothermal ¯ows
or coupled to the energy equation formulated for the

¯uid motion [2±6].
The integral transform method, due to its hybrid

numerical±analytical structure, o�ers the attractive

feature of automatically controlling the global error
in the computation, in a way similar to a purely
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analytical approach. This aspect enables the essential

con®dence on the ®nal converged results accuracy,

making this type of approach particularly suitable

for the con®rmation and/or generation of bench-

mark results for di�erent classes of problems in

heat and ¯uid ¯ow. Among various other contri-

butions, of speci®c relevance to the application here

considered, it is worth mentioning the integral trans-

form solutions of the Navier±Stokes equations

under the streamfunction-only formulation, for

incompressible ¯ow within cavities and channels

[2,3] and natural convection under the Boussinesq

approximation inside rectangular enclosures for both

steady and transient states [4,5]. In addition, natural

convection within porous rectangular enclosures was

accurately solved through the same integral trans-

form approach [6].

In 1983, De Vahl Davis [7] provided the ®rst set

of benchmark solutions for the steady natural con-

vection in a enclosed square cavity with di�eren-

tially heated vertical walls and insulated top and

bottom walls, utilizing a second-order ®nite di�er-

ences method and the Richardson extrapolation

scheme. Following this pioneering work, di�erent

solution strategies have been reported in the litera-

ture. Among the most relevant works to our present

objectives, one can cite Saitoh and Hirose [8], who

utilized a non-conservative fourth-order ®nite di�er-

ences approach in 1989, Hortmann et al. [9], who

have made use of the ®nite volume method in

1990, and LeÂ QuereÂ [10], who employed a pseudo-

spectral Chebyshev algorithm to provide accurate

solutions to values of Rayleigh number from 106 to

108, in 1991.

In contrast with steady natural convection, transient

analysis of natural convection in a cavity has received

much less attention in the literature, despite its scienti-

®c and technological relevance. A brief literature

review includes the contributions of Wilkes and

Churchill [11] in 1966, who provided a pioneering tran-

sient analysis using an implicit alternating direction

(ADI) ®nite di�erence method, Patterson and Imberger

[12], in a classical work, who used a simple scale analy-

sis to give some insight into the possible transient

behavior and obtained a number of numerical sol-

utions using a modi®ed version of the ®nite di�erence

method proposed by Chorin [13]. More recently, Sai et

al. [14] presented solutions for the transient problem in

the Rayleigh number range of 103±106 by the appli-

cation of the ®nite element method based on the ®rst-

order projection scheme, which is an extension of

Chorin's algorithm. Ramaswamy et al. [15] applied a

Nomenclature

Cp ¯uid speci®c heat (dimensionless without
subscript)

g gravity acceleration

k ¯uid thermal conductivity (dimensionless)
L cavity length and height
Mp, Kr normalization integrals, Eqs. (11c) and

(12c)
Ni, l normalization integrals, Eq. (9)
NT truncation order in temperature expansions

Nu Nusselt number, Eqs. (23c±23e)
NV truncation order in streamfunction expan-

sions
Pr Prandtl number �� n0=a0)
Ra Rayleigh number �� gb�Th ÿ Tc�L3=a0n0)
T temperature (dimensionless)
�T transformed temperature (dimensionless)

T� ®ltered temperature (dimensionless)
u velocity component, x direction (dimension-

less)

v velocity component, y direction (dimension-
less)

x space coordinate (dimensionless)

y space coordinate (dimensionless)
Xi, Yl eigenfunctions (streamfunction), Eqs. (6a,b)

and (7a,b)
t time (dimensionless)

Greek symbols
a ¯uid thermal di�usivity
ak, gq reordered eigenvalues, (Eqs. (19a,b))

b thermal expansion coe�cient
bp, lr eigenvalues (temperature), Eqs. (11b) and

12(b)

fp, Gr eigenfunctions (temperature), Eqs. (11a),
(12a)

c streamfunction (dimensionless)
�c transformed streamfunction

m, n absolute and kinematic viscosities (dimen-
sionless without subscript)

Subscripts
k, q reordered eigenquantities indices
h, c hot and cold walls, respectively

0 property estimate at initial temperature,
dimensional

� dimensional variables (T�, x�, y�, k�, Cp�,
u�, v�, t�, c�, m�)
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semi-implicit projection-type ®nite element method to

perform two numerical tests, oscillatory cavity ¯ow
with heat transfer and transient buoyancy-driven ¯ow
in a square cavity.

Parallel to these research e�orts, and also in recent
years, the in¯uence of the ¯uid properties variation

with temperature has appeared as an important aspect
to be analyzed in this class of problems. The well-
known Boussinesq approximation has been extensively

employed, but very little research has been undertaken
to inspect the in¯uence of variable thermophysical
properties in the ¯ow structure, with or without the

Boussinesq simpli®cation. Among other researches of
relevance to our present purposes, Bergles [16] pre-

sented correlation formulae to compute the in¯uence
of each property (viscosity and conductivity) for forced
convection in tubes, considering incompressible ¯ow.

Gray and Giorgini [17] studied the limit of application
of the Boussinesq approximation to external ¯ows of
water and air, using two orders of approximation:

strict and extended. They presented also graphics to in-
dicate accurate limits to those hypothesis. The stability

and the limits of the Boussinesq approximation were
also the subject in the works of Graham [18] and
Spradley and Churchill [19], both using the ®nite

di�erence method to compute the lid-driven cavity pro-
blem for a compressible ¯uid with variable properties.

Suslov and Paollucci [20] reproduced and extended the
results of these works, aimed at ®nding the critical
Rayleigh number, and at showing the presence of two

regimen of instability, one of them due to the non-
Boussinesq e�ects. Yu et al. [21] tried to present a
benchmark for the compressible problem (the lid-

driven cavity), using ®nite element analysis, and hand-
ling the common limitations of this method when

applied to low-Mach number compressible ¯ows.
Finally, Zhong et al. [22] revised the work of Graham
[18], centering their study in the validity of the Boussi-

nesq approximation. They found a more strict limit
than the one presented in [17], despite of the good
agreement achieved for Nusselt number calculations.

Here, the results obtained for variable properties will
be inspected within and outside the limits predicted in

[22], considering variations of dynamic viscosity, ther-
mal conductivity, speci®c heat and density in the body
force term only. Thus, maintaining the Boussinesq ap-

proximation, the temperature variation e�ects, on the
¯ow structure, of all other thermophysical properties

will be analyzed. We ®rst reproduce through integral
transformation, the transient natural convection sol-
utions under the Boussinesq approximation and con-

stant properties to recon®rm some previously reported
reference results, for which there is an evident lack of
formal con®dence on their global accuracy control.

The method is then validated and the solutions are
compared with those obtained for the variable proper-

ties situation, when the very desirable hybrid character-
istics of the GITT are explored in a situation of

marked non-linear e�ects, in automatically controlling
the global error in the simulation.

2. Problem formulation

The problem to be solved corresponds to the two-
dimensional transient form of the coupled continuity,
Navier±Stokes and energy equations, applied to a ¯uid

®lled square cavity, where the density is considered
constant throughout except in the buoyancy term, with
the horizontal walls insulated, and a prescribed tem-
perature di�erence applied between the two vertical

walls. The governing equations, presented for variable
physical properties, are the vorticity transport equation
in the streamfunction-only formulation, and the associ-

ated energy equation, which in dimensionless form are
given by:

@
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with initial and boundary conditions

T�x, y, 0� � c�x, y, 0�; 0RxR1, 0RyR1 �2a,b�
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� 0; x � 0 �2c±e�
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where the reference Rayleigh and Prandtl numbers are
de®ned as:

Ra0 � gb�Th ÿ Tc �L3

a0n0
and Pr0 � m0Cp0

k0
�3a,b�

and the remaining dimensionless variables are given

by:

c � c�
a0

; t � a0
L 2

t�; x � x �
L
; y � y�

L
;

T � T� ÿ Tc

Th ÿ Tc

; m � m�
m0

; k � k�
k0

;

Cp � Cp�
Cp0

�4a±h�

where the subscript ``�'' identi®es the dimensional vari-
ables, the subscript ``0'' denotes the property estimate

at the initial temperature, L is the dimension of the
cavity, a is the ¯uid thermal di�usivity, m is the vari-
able kinematic viscosity, k is the variable thermal con-

ductivity, Cp is the variable speci®c heat, Th is the hot
wall temperature, Tc is the cold wall temperature, g is
the gravity acceleration and b is the ¯uid volumetric

expansion coe�cient.

3. Solution methodology

The ®rst step in the solution procedure is the ®lter-

ing strategy to enhance convergence of the eigenfunc-
tion expansions, by making the boundary conditions
homogeneous. The simplest choice of a ®ltering sol-

ution for the temperature ®eld is extracted from the
steady pure conduction problem:

T�x, y, t� � T ��x, y, t� � TF�x� �5a�

where the ®lter is written as:

TF�x� � 1ÿ x �5b�
More re®ned ®ltering could be proposed, for instance,

by considering the transient version of the conduction
problem, but the simple expression above su�ces for
our present needs.

The initial conditions for the ®ltered potentials are
then rewritten as:

T ��x, y, 0� � xÿ 1, c�x, y, 0� � 0; 0RxR1

and 0RyR1
�5c,d�

and we should now seek a solution for the ®ltered tem-

perature distribution, T ��x, y, t�
The next step is the selection of the eigenfunctions

basis in each direction, x and y, for each individual po-

tential, c and T �: Following previous developments
[2±5], the streamfunction eigenvalue problems yield the

following eigenfunctions in each coordinate:

Xi�x� �

8>>><>>>:
cos ji�xÿ 1=2� sec

ÿ
ji=2

�ÿ cosh ji�xÿ 1=2�
sech

ÿ
ji=2

�
; for i � 1, 3, 5, . . .

sin ji�xÿ 1=2� csc
ÿ
ji=2

�ÿ sinh ji�xÿ 1=2�
csch

ÿ
ji=2

�
; for i � 2, 4, 6, . . .

�6a,b�
and

Y`�y� �

8>>><>>>:
cos j`�yÿ 1=2� sec

ÿ
j`=2

�ÿ cosh j`�yÿ 1=2�
sech

ÿ
j`=2

�
; for ` � 1, 3, 5, . . .

sin j`�yÿ 1=2� csc
ÿ
j`=2

�ÿ sinh j`�yÿ 1=2�
csch

ÿ
j`=2

�
; for ` � 2, 4, 6, . . .

�7a,b�
where the eigenvalues ji (or j`� are the same in both
directions x and y, and obtained from:

tanh
ji, `

2
�
(
ÿtan

ÿ
ji, `=2

�
for i and ` � 1, 3, 5, . . .

tan
ÿ
ji, `=2

�
for i and ` � 2, 4, 6, . . .

�8a,b�
and the normalization integrals Ni and N` are found
to be, in this special case:

Ni, ` � 1; for i and ` � 1, 2, 3, . . . �9�

The normalized eigenfunctions ~Xi�x� and ~Y`�y� are
then de®ned by:

~Xi�x� � Xi�x�
N 1=2

i

; ~Y`�y� �
Y`�y�
N 1=2
`

�10a,b�

The eigenfuctions associated with the temperature
problem in the x direction are given by:

fp�x� � sin bpx; for p � 1, 2, 3, . . . �11a�

with the eigenvalues and norms;

bp � pp; for p � 1, 2, 3, . . . �11b�

Mp � 1=2; for p � 1, 2, 3, . . . �11c�

while in the y direction the temperature eigenvalue
problem is solved as:

Gr � cos lry; for r � 1, 2, 3, . . . �12a�

with eigenvalues:

lr � �rÿ 1�p; for r � 1, 2, 3, . . . �12b�

and norms:
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Kr �
�
1; for �rÿ 1� � 0
1=2; for �rÿ 1�6�0 �12c�

The normalized eigenfunctions ~fp�x� and ~Gr�y� are
de®ned as:

~fp�x� �
fp�x�
M1=2

p

; ~Gr�y� �
Gr�y�
K 1=2

r

�13a,b�

Following the formalism in the generalized integral

transform technique, the double transformation for the
streamfunction ®eld in the x and y directions is
obtained from the integral transform pairs below:

�ci`�t� �
�1
0

�1
0

~Y`�y� ~Xi�x�c�x, y, t� dx dy;

transform

�14a�

c�x, y, t� �
X1
`�1

X1
i�1

~Y`�y� ~Xi�x� �ci`�t�; inverse �14b�

Similarly, for the temperature ®eld in the x and y
directions:

�Tpr�t� �
�1
0

�1
0

~Gr�y� ~fp�x�T ��x, y, t� dx dy;

transform

�15a�

T ��x, y, t� �
X1
r�1

X1
p�1

~Gr�y� ~fp�x� �Tpr�t�; inverse �15b�

Applying the double transformations ((14a) and (15a))

in the streamfunction problem and in the temperature
problem, respectively, produces the in®nite coupled
ODE system below:

X1
j�1

X1
m�1

Ei`jm

d �cjm�t�
dt

� Fi`�t� �16a�
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dt
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The same transformation procedure is operated on the
initial conditions, providing:

�ci`�0� � 0 and �Tpr�0� � Hpr �16c,d�

The coe�cients above are integrals of the related
eigenfunctions, given by:
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Hpr �
�1
0

�1
0

~Gr�y� ~fp�x��xÿ 1� dy dx �18b�

where Ei`jm and Hpr are analytically obtained through
symbolic manipulation packages [23], and Fi`�t� and
Gpr�t� are obtained through numerical integration at
each internal step of the ODE system solution.

Eqs. (16) form an in®nite system of coupled non-
linear ODEs, to be solved for the transformed poten-
tials, �ci` and �Tpr: From a computational point of view,

only a truncated version of such nested summations
can be actually evaluated. However, the plain trunca-
tion of these series, individually, to a certain prescribed

®nite order, is certainly not an e�cient approach. In
this way, some still important information to the ®nal
result can be disregarded, while other terms are
accounted for that have essentially no contribution to

convergence in the relative accuracy required. There-
fore, for an e�cient computation of these expansions,
the in®nite multiple summations should ®rst be con-

verted to a single sum representation, with the appro-
priate reordering of terms, according to their
individual contribution to the ®nal numerical result.

Then, one would be able to evaluate a minimum num-
ber of eigenvalues and related derived quantities, as
many as required to reach the user prescribed accuracy
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target. This aspect is even more evident when the com-
putational costs can be markedly reduced through this

reordering of terms, which then represents a reduction
on the number of ordinary di�erential equations to be
solved numerically in the transformed system. Since

the ®nal solution is not, of course, known a priori, the
parameter which shall govern this reordering scheme
must be chosen with care, and proved to be a good

choice. Once the ordering is completed, the remaining
of the computational procedure becomes as straight-
forward and cost-e�ective as in the one-dimensional

case. It is noticeable that the most common choice of
ordering strategy, based on the argument of the domi-
nating exponential term, although not always in a
monotonic fashion, o�ers a good compromise between

the overall convergence enhancement and simplicity in
use. However, individual applications may require
more elaborate reordering that accounts for the in¯u-

ence of nonlinear source terms in the ODE system.
The ordering scheme for multidimensional eigen-

function expansions employed is described in more

detail in [24,25]. Here, the criteria selected for the
ordering procedure involves the summation of the
eigenvalues in each direction, or:

a4k � j4
i�k� � j4

`�k� and g 2q � b 2
p�q� � l 2

r�q� �19a,b�

Then, the indices i and ` related to the streamfunction

expansion are reorganized into the single index k,
while the indices p and r for the temperature expansion
are collapsed into the new index q. The associated

double sums are then rewritten as
P1

j�1
P1

m�14
P1

n�1:
System (16) is then rewritten as:

X1
n�1

Ekn
d �cn

dt
� Fk�t� �20a�

d �Tq

dt
� Gq�t� �20b�

with initial conditions,

�ck�0� � 0 and �Tq�0� � Hq �20c,d�

System (20) above is now in the appropriate format
for numerical solution. The expansions are then trun-
cated to NV and NT terms, respectively, for the

streamfunction and temperature ®elds, where the trun-
cation orders are automatically selected along numeri-
cal integration of the ODE system so as to reach the

user requested accuracy target, and the coe�cients
Fk�t� and Gq�t� are numerically evaluated at each step
of the solution process.

Subroutine DIVPAG form the IMSL Library [26] is
employed as the initial value problem solver, once sys-
tem (20) is rewritten in the following form:

AY 0 � f�Y, t� �21a�

Y�0� � Y0 �21b�
where the solution vector is given by:

Y �
�

�c1�t�, . . . , �cNV�t�, �T1�t�, . . . , �TNT�t�
	T �22�

System (21) is composed of NV+NT ODEs, which are
likely to experience high sti�ness ratios. However,
Gear's method implemented in subroutine DIVPAG
[26] is capable of handling such situations, o�ering an

automatic accuracy control scheme.
Quantities of practical interest are then readily

obtained from the analytic inversion formulae, such as,

the horizontal and vertical velocity components:

u �
XNV

k�1
~Xi�x�

d ~Y`�y�
dy

�ci`�t� and

v � ÿ
XNV

k�1

d ~Xi�x�
dx

~Y`�y� �ci`�t�
�23a,b�

The maximum (or minimum) local Nusselt number at
the hot wall (x = 0), is determined from the ex-
pression below:

Nuhot � ÿk�T�@T
@x

����
x�0

�23c�

the average Nusselt number at any x cross-section,

Nuav �
�1
0

�
u�x, y, t�T�x, y, t� ÿ k�T�@T�x, y, t�

@x

�
dy

�23d�

and the global Nusselt number across the cavity:

Nug �
�1
0

Nuav dx �23e�

The integrations required in Eqs. (23d and 23e) are nu-
merically performed by making use of the appropriate
subroutines in the IMSL library [26].

4. Results and discussion

Two independent Fortran codes were built and im-
plemented on a PC-PENTIUM II 200 MHz, where the

user prescribed relative error criteria was selected to be
either 10ÿ5 or 10ÿ4, specialized, respectively, for the
constant and variable properties cases. The code for

constant properties was specially useful in validating
the more general one, since in that case all the related
integrals could be performed analytically, by employ-
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ing a symbolic manipulation system [23]. Three values
of the Rayleigh number, equal to 103, 104 and 105,

were analyzed, in both situations, for an air-®lled
square cavity (Pr = 0.71). Results are presented and
compared for di�erent times of interest during the

transient process, in terms of velocity components,
dimensionless temperature, local and average Nusselt
numbers. Also, some steady-state results under the
Boussinesq approximation have been compared with

previously reported results. To evaluate the numerical
integrals that de®ne the coe�cients Fk�t� Gq�t�, up to
40 points had been used in Gaussian quadrature, and

the convergence of this numerical procedure was care-
fully examined [27]. The functions employed to rep-
resent the ¯uid physical properties variation with

temperature, provided by Zhong et al. [22] in dimen-
sionless form, are written as:

m�T� � 14:58� 10ÿ7T 3=2

110:4� T
�24a�

k�T� � 2:6483� 10ÿ3T 3=2

T� 245:4� 10ÿ�12=T�
�24b�

Cp�T� � 9898:24ÿ 0:3316T� 0:2025� 10ÿ3T 2 �24c�
The limit of validity for the Boussinesq approxi-

mation is proposed by Zhong et al. [22] as:

y0 � 0:0244Ra0:243 �25a�

where:

y0 � Th ÿ Tc

Tc

�25b�

Thus, three distinct situations of variable properties
are analyzed in relation to the Boussinesq hypothesis

in order to compare the physical phenomena behavior
in each one. The ®rst one, within the proposed limit of
the Boussinesq approximation, corresponds to a little

di�erence between the hot and cold temperature walls
�DT11 K), the second one for an equivalent di�erence
at the above theoretical limit and, ®nally, for a con-

siderable di�erence between the cavity walls tempera-
tures �DT� 1 K), as illustrated in Tables 1 and 2.
Firstly, a set of comparisons was performed under

the Boussinesq formulation with constant thermophysi-

cal properties against previously reported numerical

results [14], for both the temperature and vertical vel-

ocity component (v ) distributions. Fig. 1(a)±(c) illus-
trate such comparisons for all three cases, Ra = 103,

104 and 105, respectively, at the cavity midplane ( y =

1/2). The overall agreement is quite reasonable to the

graphic scale within the transient region. Some more

noticeable deviations were identi®ed as the time
increases, probably due to some error propagation

e�ect in the purely numerical solution of [14].

Table 3 brings some comparisons of the present inte-

gral transform solutions for the transient constant

properties formulation, when steady-state is attained,

against previously reported results, obtained through

di�erent discrete approaches as in [14,15], as well as
with the integral transform solution of the actual ellip-

tic steady-state formulation of [4,7]. Values of interest

such as the streamfunction modulus at the center of

the cavity, jcMEDj, the maximum streamfunction mod-

ulus at the cavity jcMAXj (at x = 0.855 and y = 0.601
positions for Ra = 105), and the maximum vertical

velocity component at the cavity midplane ( y = 1/2),

as in Ref. [7], are analyzed.

It is important to recall that the steady-state results

from the present work, as well as the results presented

by Sai at al. [14], have been obtained making use of

the fully transient formulation in order to reproduce
the transient behavior of the heat and ¯uid ¯ow

phenomena. Ramaswamy et al. [15] took advantage of

the transient formulation but only reported steady-

state solutions. For Ra = 103 the major di�erence
between De Vahl Davis benchmark solutions [7] and

the other proposed results is of 1.29% on the vertical

velocity component supplied by [14]. For Ra = 104

the solutions appear to be more coincident, with the

major di�erence among [7] and the other results being
of 0.55% on the streamfunction modulus supplied in

[15]. Finally, for Ra = 105, some scattering among the

proposed solutions becomes more evident, while the

major di�erence between the various proposed results

and [7] is of 1.5% on the maximum streamfunction
modulus jcMAXj supplied by Ramaswamy et al. [15];

also the di�erence of 1.33% between the vertical vel-

Table 2

Values of DT as function of y0

y0 DT (K)

0.0101 3.03

0.1307 39.21

0.2288 68.64

0.4030 120.90

0.5 150.00

0.8 240.00

Table 1

Values of y0 for each case studied

Ra Boussinesq region Limit (22) Non-Boussinesq region

103 0.0101 0.1307 0.5

104 0.0101 0.2288 0.5

105 0.0101 0.4030 0.8
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Fig. 1. Temperature and vertical velocity component distributions in the cavity midplane ( y = 1/2). (a) Ra = 103, (b) Ra = 104

and (c) Ra = 105.
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ocity component result provided by Sai et al. [14] and
De Vahl Davis [7] appears to be more considerable.

The computed solutions obtained from the present
method, shown in Table 3, indicate a very good agree-
ment when compared with the benchmark solution of

De Vahl Davis [7], with a major di�erence of 0.39%
for the vertical velocity component at Ra = 105

between the present work results and benchmark sol-
utions [7].
Next, quantities of interest in heat transfer calcu-

Table 3

Comparison of the stream function at the cavity center, maximum stream function and maximum vertical velocity component for

di�erent values of Ra, with previous results

Ra jcMEDj jcMAXj jVMAXj

103

GITT Ð present work 1.175 1.175 3.695

Ramaswamy et al. [15] 1.170 1.175 ±

Sai et al. [14] ± ± 3.65

GITT [4] (steady formulation) 1.175 1.175 3.698

De Vahl Davis [7] (steady formulation) 1.174 1.174 3.697

104

GITT Ð present work 5.073 5.073 19.61

Ramaswamy et al. [15] 5.099 5.099 19.62

Sai et al. [14] ± ± 19.65

GITT [4] (steady formulation) 5.074 5.074 19.63

De Vahl Davis [7] (steady formulation) 5.071 5.071 19.617

105

GITT Ð present work 9.112 9.614 68.86

Ramaswamy et al. [15] 9.217 9.756 68.62

Sai et al. [14] ± ± 69.50

GITT [4] (steady formulation) 9.116 9.617 68.62

De Vahl Davis [7] (steady formulation) 9.111 9.612 68.59

Table 4

Comparison of the present work steady-state results with some previously reported solutions

Ra Average Nusselt number along the cavity hot wall

GITT

(present work)

Finite elements

(Sai et al. [14])

Benchmark solution

(De Vahl Davis [7])

Estimated deviation with respect to [7] (%)

Present work Sai et al. [14]

103 1.118 1.1307 1.117 0.09 1.23

104 2.248 2.2894 2.238 0.44 2.30

105 4.562 4.6875 4.509 1.18 4.00

Table 5

Comparison of the present work with some previously reported benchmark results (steady-state)

Ra Average Nusselt number along the cavity hot wall

GITT

(present work)

Benchmark solutions Estimated deviation with

respect to [4,9] (%)

GITT [4]

(steady formulation)

Finite volumes

(Hortmann et al. [9])

103 1.118 1.118 ± 0

104 2.248 2.245 2.245 0.013

105 4.562 4.522 4.522 0.885
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lations were examined and compared with the ®nite el-

ements simulation presented in [14], such as the y-aver-

aged Nusselt numbers at the hot wall (x = 0) and at
the midplane of the cavity (x = 1/2), as illustrated in

Fig. 2(a)±(c) (Ra =103, 104 and 105). Again, the agree-

ment is very good to the graph scale, including the

early stages in the transient behavior, when physical
oscillations are expected and obtained. The appearance

Fig. 2. Development of the average Nusselt number at the hot wall (x = 0) and at the cavity vertical midplane (x = 1/2) with

time. (a) Ra = 103, (b) Ra = 104 and (c) Ra = 105.
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of internal waves as Ra is increased is quite noticeable,
as can be observed in the oscillations of the average

Nusselt number at the cavity midplane evolution.
Tables 4 and 5 illustrate some numerical steady-state

values in Boussinesq formulation with constant proper-

ties of the y-averaged Nusselt numbers at the hot wall
(x = 0), Nuavjx�0, compared with previously reported
solutions. Table 4 presents the estimated relative devi-

ations in percentages for the present work results and
for the results of Sai et al. [14], when compared with
the classical benchmark solution of De Vahl Davis [7].

Table 5 presents the estimated deviations in terms of
percentages for the present work results in relation to
two recent benchmark solutions of the steady-state
problem, given in [4,9]. Tables 3±5 provide the necess-

ary ®nal con®dence on the validation of the developed
codes. It can be noticed that the present transient code
results for steady-state at high Rayleigh numbers are

not fully coincident with the previous GITT simulation
for the steady elliptic formulation, since in that situ-
ation [4] a single eigenfunction expansion was

employed and the resulting coupled boundary value
problem could be numerically solved under more strict
precision requirements.

Once the present transient code was validated for
the constant properties situation, results will be pre-
sented for each proposed Rayleigh number, now tak-
ing into account the variable properties e�ects within

the three distinct regions planned in Table 1. Thus, the
variation of the local Nusselt numbers along the cavity
hot wall (x = 0) at di�erent times for the three situ-

ations are illustrated in Fig. 3(a±c), while the variable
properties code, inside the assumed limit of the Boussi-
nesq hypothesis �y0 � 0:0101), is compared with the

constant properties code.
One can see that for y0 � 0:0101, the present vari-

able properties results correspond to those previewed
by the Boussinesq hypothesis with constant properties,

with a small discrepancy, which is higher at the ®rst
value of time shown (0.7% for Ra = 105). As y0
increases, the variable properties e�ects become more

noticeable, and are clearly identi®ed in all three values
of Rayleigh number considered. Such behavior is more
closely related to the variation of the thermal conduc-

tivity, which for the Nusselt number evaluation o�ers
a more direct in¯uence. Fig. 4(a±c) show the evolution
of the average Nusselt number at the hot wall against

time. Once again, the results for y0 � 0:0101 are in
good agreement with the constant properties ones. The
variable properties e�ects are observed to be more
marked along the ¯ow development, during the time

evolution, and less marked on this important averaged
quantity as the steady-state situation is approached.
The physical oscillations due to the internal waves at

higher values of Ra are also signi®cantly altered due to
the variable properties consideration.

Fig. 3. Comparison of the local Nusselt number along the hot

wall of the cavity at di�erent times, for constant and variable

properties. (a) Ra = 103, (b) Ra = 104 and (c) Ra = 105.
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Fig. 5(a±d) show the isolines of the streamfunction

and temperature for Ra = 105 for four times of in-

terest. The more noticeable in¯uence of the properties

variation in the streamlines seems to be a displacement

of the center of circulation, and a reduction of gradi-

ents in the x- and y-coordinates. In this case, the main

cause of the di�erences among the curves for each

value of y0 might be the variation of the viscosity,

which more directly a�ects the rate of momentum

exchange. In the isotherms, displacements are also

observed, as the heat ¯ux tends to rise in the regions

where the convection is expected to be stronger, ident-

i®ed by the increasingly horizontal curves and also

clearly observed in the behavior of the Nusselt number

variation. The behavior observed in both series of iso-

lines is in accordance to the one found by Suslov [20]

and others [18,19], not taking the e�ects of compress-

ibility into account.

5. Conclusions

Laminar natural convection with variable physical

properties inside cavities was successfully solved

through the integral transform approach, and critically

compared to the constant properties model for di�er-

ent situations de®ned in relation with theoretical limits

for the application of the Boussinesq hypothesis. The

computer codes were thoroughly validated against pre-

viously reported benchmark solutions, for both steady

and transient situations, and used to demonstrate the

¯exibility of the proposed methodology in dealing with

more complex coupled heat and ¯uid ¯ow models. The

Boussinesq approximation was maintained throughout

the computations, while varying all the remaining ther-

mophysical properties. It may be concluded that the

properties variation e�ects are considerable even well

within the assumed region of applicability for the

Boussinesq simpli®cation, as con®rmed by the Nusselt

number distributions and evolutions, especially along

the ¯ow development period. Thus, proposed limits for

the density variation simpli®cation are not directly ap-

plicable to the properties variation elimination. It may

also be observed that limits previewed for the use of

the Boussinesq approach might not be totally accurate

all along the transient phenomena, though might be

acceptable for most steady-state calculations. The

present research should now progress towards the

removal of the Boussinesq approximation, maintaining

the variable properties in¯uence within the transient

phenomena, allowing for further and progressive com-

parisons with the presently reported results.

Fig. 4. Variation of the average Nusselt number at the hot

wall (x = 0), for constant and variable properties. (a) Ra =

103, (b) Ra = 104 and (c) Ra = 105.

M.A. Leal et al. / Int. J. Heat Mass Transfer 43 (2000) 3977±39903988



Fig. 5. Streamlines and isotherms for Ra = 105 at: (a) t = 0.005, (b) t = 0.015, (c) t = 0.100, and (d) t = 0.550. (Ð y0 � 0:0101,
± ± y0 � 0:403, - - - y0 � 0:8).

M.A. Leal et al. / Int. J. Heat Mass Transfer 43 (2000) 3977±3990 3989



Acknowledgements

The authors would like to acknowledge the ®nancial
support provided by CNPQ, FUJB, PRONEX and
CAPES, federal sponsoring agencies/programs in Bra-

zil.

References

[1] R.M. Cotta, Integral transforms in computational heat

and ¯uid ¯ow, CRC Press, Boca Raton, FL, 1993.

[2] J.S. PeÂ rez Guerrero, R.M. Cotta, Integral transform

method for Navier±Stokes equations in streamfunction-

only formulation, Int. J. Num. Meth. in Fluids 15

(1992) 399±409.

[3] J.S. PeÂ rez Guerrero, R.M. Cotta, Benchmark integral

transform results for ¯ow over a backward-facing step,

Comput. Fluids 5 (1996) 527±540.

[4] M.A. Leal, J.S. PeÂ rez Guerrero, R.M. Cotta, Natural

convection inside two-dimensional cavities Ð the inte-

gral transform method, Comm. Num. Meth. Eng 15

(1999) 113±125.

[5] M.A. Leal, Natural convection in enclosures, in: R.M.

Cotta (Ed.), The Integral Transform Method in

Thermal and Fluids Science and Engineering, Begell

House Inc, New York, 1998, pp. 375±395.

[6] C. Baohua, R.M. Cotta, Integral transform analysis of

natural convection in porous enclosures, Int. J. Num.

Meth. in Fluids 17 (1993) 787±801.

[7] G. de Vahl Davis, Natural convection of air in a square

cavity: a bench mark numerical solution, Int. J. Num.

Meth. in Fluids 3 (1983) 249±264.

[8] T. Saitoh, K. Hirose, High-accuracy bench mark sol-

utions to natural convection in a square cavity,

Computational Mechanics 4 (1989) 417±427.

[9] M. Hortmann, M. Peric, G. Scheuerer, Finite volume

multigrid prediction of laminar natural convection:

bench-mark solutions, Int. J. Num. Meth. in Fluids 11

(1990) 189±207.

[10] P. Le QueÂ reÂ , Accurate solutions to the square thermally

driven cavity at high Rayleigh number, Computers and

Fluids 20 (1) (1991) 29±41.

[11] J.O. Wilkes, S.W. Churchill, The ®nite-di�erence com-

putation of natural convection in a rectangular enclo-

sure, AIChE J 12 (1966) 161±166.

[12] J. Patterson, J. Imberger, Unsteady natural convection

in a rectangular cavity, J. Fluid Mech 100 (1) (1980) 65±

86.

[13] A.J. Chorin, A numerical method for solving incompres-

sible viscous ¯ow problems, J. Comp. Physics 2 (1967)

12±26.

[14] B.V.K.S. Sai, K.N. Seetharamu, P.A.A. Narayana,

Solution of transient laminar natural convection in a

square cavity by an explicit ®nite element scheme, Num.

Heat Transfer, Part A 25 (1994) 593±609.

[15] B. Ramaswamy, T.C. Jue, J.E. Akin, Finite element

analysis of oscillatory ¯ow with heat transfer inside a

square cavity, AIAA J 30 (2) (1992) 412±422.

[16] A.E. Bergles, Prediction of the e�ects of temperature

dependent ¯uid properties on laminar heat transfer, in:

Fundamentals of Low Reynolds Number Forced

Convection, Hemisphere, New York, 1983.

[17] D.D. Gray, A. Giorgini, The validity of the boussinesq

approximation for liquids and gases, Int. J. Heat Mass

Transfer 19 (1976) 545±551.

[18] E. Graham, Numerical simulation of two-dimensional

compressible convection, J. Fluid Mech 70 (4) (1975)

689±703.

[19] L.W. Spradley, S.W. Churchill, Pressure and buoyancy-

driven thermal convection in a rectangular enclosure, J.

Fluid Mech 70 (1975) 705±720.

[20] S.A. Suslov, S. Paolucci, Stability of natural convection

¯ow in a wall vertical enclosure under non-Boussinesq

conditions, Int. J. Heat Mass Transfer 38 (12) (1995)

2143±2157.

[21] S.T. Yu, B.N. Jiang, J. Wu, N.S. Liu, A Div-Curl-Grad

formulation for compressible buoyancy ¯ows solved by

the least squares ®nite elements method, Comp.

Methods in Applied Mech. and Eng 137 (1996) 59±88.

[22] Z.Y. Zhong, K.T. Yang, J.R. Lloyd, Variable property

e�ects in laminar natural convection in a square enclo-

sure, J. Heat Transfer 107 (1985) 103±138.

[23] S. Wolfram, MATHEMATICA Ð a system for doing

mathematics by computer, in: The Advanced Book

Program, Addison-Wesley, Reading, MA, 1991.

[24] M.D. Mikhailov, R.M. Cotta, Ordering rules for double

and triple eigenseries in the solution of multidimensional

heat and ¯uid ¯ow problems, Int. Comm. Heat and

Mass Transfer 23 (1996) 299±303.

[25] R.M. Cotta, M.D. Mikhailov, Heat Conduction Ð

Lumped Analysis, Integral Transforms, Symbolic

Computation, Wiley±Interscience, New York, 1997.

[26] IMSL Library, MATH/LIB, Houston, TX, 1989.

[27] H.A. Machado, M.A. Leal, R.M. Cotta, A ¯exible al-

gorithm for transient themal convection problems via

integral transforms, in: Proc. of the Int. Symp. on

Computational Heat and Mass Transfer, Keynote

Lecture, North Cyprus, Turkey, 1999, pp. 13±31.

M.A. Leal et al. / Int. J. Heat Mass Transfer 43 (2000) 3977±39903990


